QQ扫一扫联系
波兰表达式
波兰表达式是一种把运算符前置的算术表达式,例如普通的表达式2 + 3的波兰表示法为+ 2 3。波兰表达式的优点是运算符之间不必有优先级关系,也不必用括号改变运算次序,例如(2 + 3) * 4的波兰表示法为* + 2 3 4。本题求解波兰表达式的值,其中运算符包括+ - * /四个。
时间限制:1000
内存限制:65536
输入
输入为一行,其中运算符和运算数之间都用空格分隔,运算数是浮点数。
输出
输出为一行,表达式的值。 可直接用printf("%f\n", v)输出表达式的值v。
样例输入
* + 11.0 12.0 + 24.0 35.0
样例输出
1357.000000
括号配对
字符串中可能有三种成对的括号,"( )"、"[ ]"、"{ }"。请判断字符串的括号是否都正确配对。无括号也算正确配对。括号交叉算不正确配对,例如"12{34[78}ab]"就不算正确配对。但是一对括号被包含在另一对括号里面,例如"12{ab[8]}"不影响正确性。
时间限制:1000
内存限制:65536
输入
第一行为整数n(n<40),接下来有n行,每行一个无空格的字符串,长度小于1000。
输出
对每行字符串,如果括号配对,输出"YES",否则输出"NO"。
样例输入
2 12{ab[8]} 12{34[78}ab]
样例输出
YES NO
扑克牌排序(2023.3)
假设这里有36张扑克牌,分别为A1~A9,B1~B9,C1~C9,D1~D9,其中A代表方片,B代表草花,C代表红桃,D代表黑桃,那么,设定如下的排序规则:
1.对于两张卡牌,X1Y1与X2Y2,X1与X2表示A~D,Y1与Y2表示1~9,如果X1与X2不同,那么依照D>C>B>A的方式进行排序
2.假如有X1与X2相同时,那么就比较Y1与Y2的大小。
例如,对于如下的四张牌,有如下的升序排序结果:
D3,C4,A4,C1
升序排序的结果为A4,C1,C4,D3
有人提出了如下的排序策略:
先建立9个队列,用于存放点数的大小,将卡牌依点数存放入各自的队列之中,然后再按队列1到队列9依次出队。
例如,对于上面的结果,依次进队后,结果如下:
队列1:C1;队列3:D3,队列4:C4,A4
将其依次出队后,结果为C1,D3,C4,A4
然后,再建立4个队列,用于存放花色。将卡牌依花色A~D存放入队列1~4中,然后再按队列1到队列4依次出队。
例如,对于上面刚刚出队的序列C1,D3,C4,A4,将其依次进队,结果如下:
队列1:A4;队列3:C1,C4;队列4:D3
将其依次出队后,结果为A4,C1,C4,D3,排序结束。
请根据上面的算法,编写一个用队列对扑克牌排序的程序,要求依照上面的排序规则,根据先花色后点数的方法进行排序。
时间限制:1000
内存限制:65536
输入
输入分为两行,第一行为一个整数n,表示一共有n张牌(1<=n<=100) 第二行用XY的形式表示每一张牌,其中X为A~D,Y为1~9
输出
输出三个部分 第一个部分为第一次进队出队的结果,用Queue1:...表示,共9行,结果用空格分隔,下同 第二部分为第二次进队出队的结果,用QueueA:...表示,共4行 第三部分为一行,即将卡牌排序后的结果(升序排序)
样例输入
8 D8 A6 C3 B8 C5 A1 B5 D3
样例输出
Queue1:A1 Queue2: Queue3:C3 D3 Queue4: Queue5:C5 B5 Queue6:A6 Queue7: Queue8:D8 B8 Queue9: QueueA:A1 A6 QueueB:B5 B8 QueueC:C3 C5 QueueD:D3 D8 A1 A6 B5 B8 C3 C5 D3 D8
提示
第二次入队出队时,可以复用第一次时9个队列中的4个。所以其实只需要开辟9个队列即可。
滑动窗口
给定一个长度为n(n<=10^6)的数组。有一个大小为k的滑动窗口从数组的最左端移动到最右端。你可以看到窗口中的k个数字。窗口每次向右滑动一个数字的距离。
下面是一个例子:
数组是 [1 3 -1 -3 5 3 6 7], k = 3。
你的任务是得到滑动窗口在每个位置时的最大值和最小值。
时间限制:20000
内存限制:65536
输入
输入包括两行。 第一行包括n和k,分别表示数组的长度和窗口的大小。 第二行包括n个数字。
输出
输出包括两行。 第一行包括窗口从左至右移动的每个位置的最小值。 第二行包括窗口从左至右移动的每个位置的最大值。
样例输入
8 3 1 3 -1 -3 5 3 6 7
样例输出
-1 -3 -3 -3 3 3 3 3 5 5 6 7